skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nieber, John_L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Machine learning (ML) has been broadly applied for vadose zone applications in recent years. This article provides a comprehensive review of such developments. ML applications for variables corresponding to different complex vadose zone processes are summarized mostly in a prediction context. By analyzing and assessing these applications, we discovered extensive usages of classic ML models with relatively limited applications of deep learning (DL) approaches in general. We also recognized a lack of benchmark datasets for soil property research as well as limited integration of physics‐based vadose zone principles into the ML approaches. To facilitate this interdisciplinary research of ML in vadose zone characterization and processes, a paradigm of knowledge‐guided machine learning is suggested along with other data‐driven and ML model‐based research suggestions to advance future research. 
    more » « less